Переходные процессы в цепях постоянного тока с конденсатором

ПЕРЕХОДНЫМ ПРОЦЕССОМ называется процесс перехода от одного установившегося в цепи режима к другому. Примером такого процесса является зарядка и разрядка конденсатора. В ряде случаях законы постоянного тока можно применять и к изменяющимся токам, когда изменение тока происходит не слишком быстро. В этих случаях мгновенное значение силы тока будет практически одно и то же во всех поперечных сечениях цепи. Такие токи называют квазистационарными

РАЗРЯДКА КОНДЕНСАТОРА. Если обкладки заряженного конденсатора ёмкости С замкнуть через сопротивление R, то через это сопротивление потечёт ток. Согласно закону Ома для однородного участка цепи

IR=U,

где I и U – мгновенные значения силы тока в цепи и напряжения на обкладках конденсатора. Учитывая, что и , преобразуем закон Ома к виду

(1)

В этом дифференциальном уравнении переменные разделяются, и после интегрирования получим закон изменения заряда конденсатора со временем

, (2)

где q0 - начальный заряд конденсатора, е - основание натурального логарифма. Произведение RC, имеющее размерность времени, называется время релаксации t . Продифференцировав выражение (2) по времени, найдём закон изменения тока:

, (3)

где I0 - сила тока в цепи в момент времени t = 0. Из уравнения (3) видно, что t есть время, за которое сила тока в цепи уменьшается в е раз.

Зависимость от времени количества теплоты, выделившегося на сопротивлении R при разряде конденсатора можно найти из закона Джоуля-Ленца:

(4)

ЗАРЯДКА КОНДЕСАТОРА.

Считаем, что первоначально конденсатор не заряжен. В момент времени t = 0 ключ замкнули, и в цепи пошёл ток, заряжающий конденсатор. Увеличивающиеся заряды на обкладках конденсатора будут всё в большей степени препятствовать прохождению тока, постепенно уменьшая его. Запишем закон Ома для этой замкнутой цепи:

.

После разделения переменных уравнение примет вид:

Проинтегрировав это уравнение с учётом начального условия

q = 0 при t = 0 и с учётом того, что при изменении времени от 0 до t заряд изменяется от 0 до q, получим

, или после потенцирования

q = . (4)

Анализ этого выражения показывает, что заряд приближается к своему максимальному значению, равному С, асимптотически при t ® ?.

Подставляя в формулу (4) функцию I(t) = dq/dt, получим

. (5)

Из закона сохранения энергии следует, что при зарядке конденсатора для любого момента времени работа источника тока dАист рана сумме количества джоулевой теплоты dQ, выделившейся на резисторе R и изменению энергии конденсатора dW:

dAист= dQ + dW,

где dAист =Idt, dQ =I2Rdt, dW =d. Тогда для произвольного момента времени t имеем:

Аист(t)==. (6)

Q(t)=. (7)

W(t) ==. (8)

МЕТОДИКА И ПОРЯДОК ИЗМЕРЕНИЙ:

В реальных электрических цепях постоянного тока, содержащих конденсаторы, переходные процессы разрядки и зарядки конденсаторов проходят за время порядка 10–6 – 10-3 с. Для того,чтобы сделать доступными для наблюдения и измерения электрические параметры при переходных процессах в настоящей компьютерной модели это время значительно увеличено за счёт увеличения ёмкости конденсатора.

ЭКСПЕРИМЕНТ 1

 Определение ёмкости конденсатора методом разрядки

1.Соберите на рабочей части экрана замкнутую электрическую цепь, показанную ниже на рис.2. Для этого сначала щёлкните мышью на кнопке э.д.с.,расположенной в правой части окна эксперимента. Переместите маркер мыши на рабочую часть экрана, где расположены точки, и щёлкните маркером мыши в виде вытянутого указательного пальца в том месте, где должен быть расположен источник тока. Подведите маркер мыши к движку появившегося регулятора э.д.с., нажмите на левую кнопку мыши, удерживая её в нажатом состоянии, меняйте величину э.д.с. и установите 10 В. Аналогичным образом включите в цепь 4 других источника тока. Суммарная величина э.д.с. батареи должна соответствовать значению, указанному в таблице 1 для вашего варианта.

Таким же образом разместите далее на рабочей части экрана 7 ламп Л1-Л7 ( кнопка ), Ключ К (кнопка ), вольтметр (кнопка ), амперметр (кнопка ), конденсатор (кнопка ). Все элементы электрической цепи соедините по схеме рис.1 с помощью монтажных проводов (кнопка ).

2. Щёлкните мышью на кнопке «Старт». Должна засветиться лампа Л7, а надпись на кнопке измениться на «Стоп». Курсором мыши замкните ключ К.

3. После установления в цепи стационарного тока ( должны погаснуть лампы Л5 и Л6 и светиться лампы Л1-Л4) запишите показания электроизмерительных приборов в таблицу 2.

4. Нажмите на кнопку «Стоп» и курсором мыши разомкните ключ К.

5. Двумя короткими щелчками мыши на кнопке «Старт» запустите и остановите процесс разрядки конденсатора. Показания амперметра будут соответствовать начальному току разрядки конденсатора I0. Запишите это значение в таблицу 3.

6. Вновь замкните ключ, зарядите конденсатор и повторите п.п. 5, 6 ещё 4 раза.

7. Для каждого опыта рассчитайте It= I0/2,7- силу тока, которая должна быть в цепи разрядки конденсатора через время релаксации t и запишите эти значения в таблицу 3.

8. При разомкнутом ключе нажатием кнопки «Старт» запустите процесс разрядки конденсатора и одновременно включите секундомер.

9. Внимательно наблюдайте за изменением показаний амперметра в процессе разрядки конденсатора. Остановите секундомер и синхронно нажмите кнопку «Стоп» при показании амперметра, равном или близким к It. Запишите это значение времени t1 в таблицу 3.

10. Проделайте опыты п.п.8, 9 ещё 4 раза.

Таблица 1. Суммарное значение э.д.с. источников тока

Вариант

1

2

3

4

5

6

7

8

Э.д.с.,В

50

49

48

47

46

45

44

43

Таблица 2. Определение сопротивления лампы.

№п/п

I, А

U, В

R, Ом

 

Номер

опыта

1

2

3

4

5

Среднее

значение

I0, А

It, А

t, с

C, Ф

Таблица 3. Результаты измерений и расчётов.

ОБРАБОТКА РЕЗУЛЬТАТОВ:

1. По закону Ома для участка цепи Л1-Л4: и результатам измерений, приведённым в таблице 2, определите сопротивление одной лампы.

2. По формуле (при разрядке конденсатора квазистационарный ток протекает по 6 последовательно соединённым лампам) определите ёмкость конденсатора и запишите эти значения в таблицу 3.

3. Рассчитайте погрешности измерений и сформулируйте выводы по результатам проделанной работы.

ЭКСПЕРИМЕНТ 2

Изучение зависимости от времени количества тепла, выделившегося на нагрузке при разряде конденсатора

  1. Выполняя действия, аналогичные описанным в эксперименте 1, зарядите конденсатор до напряжения, соответствующего суммарному значению э.д.с. для вашего варианта.
  2. Нажмите кнопку «Стоп» и отключите ключ К.
  3. Проведите 5-ти секундный процесс частичного разряда конденсатора через подключённые лампы. Для этого нажмите синхронно кнопку «Старт» и кнопку запуска секундомера и через 5 секунд нажатием кнопки «Стоп» остановите процесс разрядки конденсатора.
  4. Запишите показания амперметра в таблицу 4 и вновь зарядите конденсатор до первоначального напряжения.
  5. Последовательно увеличивая длительность процесса разрядки конденсатора на 5 с, проделайте эти опыты до времени разрядки, соответствующему полному исчезновению заряда на конденсаторе. (Напряжение на конденсаторе и ток разрядки через лампы должен быть близким к нулю). Результаты измерений тока разрядки запишите в соответствующие ячейки таблицы 4.

Таблица 4. Результаты измерений и расчетов

Время разрядки t, с

5

10

15

20

5n

Ток разряда I через t с, А

Кол-во тепла Q за t с, Дж

ОБРАБОТКА РЕЗУЛЬТАТОВ:

  1. Для каждого времени разрядки вычислите по формуле (4) количество тепла, выделившегося на шести лампах и запишите эти значения в соответствующие ячейки третьей строки табл.4. Полезный совет: для расчёта Q воспользуйтесь программой MS Exсel.
  2. Постройте график зависимости количества выделившегося тепла Q к данному моменту времени от длительности процесса разрядки конденсатора t.
  3. Сравните рассчитанное количество тепла, выделившееся к моменту полного разряда конденсатора с его теоретическим значением, равным .
  4. Сделайте выводы по графику и ответу и проведите расчёт погрешностей измерений.

ЭКСПЕРИМЕНТ 3

Проверка закона сохранения энергии в процессе зарядки конденсатора через сопротивление

Рис.3

  1. Соберите в рабочей части экрана опыта схему, показанную на рис.3. Вольтметр, включённый параллельно 5-ти лампам, будет показывать напряжение на внешнем сопротивлении, а амперметр – силу тока через нагрузку и источники тока. Напряжение на конденсаторе определяется программой автоматически и указывается в вольтах на экране монитора над конденсатором.
  2. Установите суммарную э.д.с. источников тока, соответствующую значению, приведённому в табл.1 для вашего варианта.
  3. При разомкнутом ключе К нажмите кнопку «Старт».
  4. Нажатием кнопки мыши замкните ключ К и начните процесс зарядки конденсаторов. Одновременно с замыканием ключа включите секундомер.
  5. Через время релаксации t = RС нажатием кнопки «Стоп» остановите процесс и запишите показания электроизмерительных приборов в таблицу 5.
  6. Нажмите кнопку «Выбор» и обнулите показания напряжений на всех конденсаторах и на электроизмерительных приборах.
  7. Повторите эти измерения ещё 4 раза и заполните две верхних строки таблицы 5.

Таблица 5. Результаты измерений и расчетов

№ опыта

1

2

3

4

5

Среднее

I, A

Uc, B

UR, B

Аист, Дж

DW, Дж

Q, Дж

ОБРАБОТКА РЕЗУЛЬТАТОВ:

  1. По формулам 6, 7, 8 и измеренным значениям напряжения на конденсаторе Uc рассчитайте величины работу источника тока Аист, изменение энергии конденсатора DW и выделившегося на нагрузке количества тепла Q через время заряда, равного времени релаксации.
  2. Проверьте выполнение закона сохранения энергии в процессе зарядки конденсатора по формуле: Аист =DW + Q.
  3. Сделайте выводы по итогам работы.

Вопросы и задания для самоконтроля

Вопросы и задания для самоконтроля

  1. Что представляет собой конденсатор и от чего зависит его ёмкость?
  2. Выведите формулы ёмкости плоского, цилиндрического и сферического конденсаторов.
  3. Как изменяется разность потенциалов на обкладках конденсатора при его зарядке и разрядке?
  4. Какой ток называется квазистационарным?
  5. Выведите формулы электроёмкости батареи последовательно и параллельно соединённых конденсаторов
  6. Что такое время релаксации?
  7. Объясните принцип работы экспериментальной установки.
  8. Нарисуйте графики зависимости силы тока и напряжения от времени при зарядке и разрядке конденсатора.
  9. Соберите на мониторе такую цепь, состоящую из источника тока, двух ламп, выключателя и соединительных проводов, чтобы с выключением лампы в одной цепи загоралась лампа в другой.
  10. Определите заряд, который пройдёт через гальванометр в схеме, показанной на рис. 2, при замыкании ключа.
  11. Конденсатор ёмкости С = 300 пФ подключается через сопротивление R =500 Ом к источнику постоянного напряжения U0. Определите: а) время, по истечению которого напряжение на конденсаторе составит 0,99 U0; в) количество тепла, которое выделится на этом сопротивлении при разрядке конденсатора за это же время.
  12. Имеется ключ, соединительные провода и две электрические лампочки. Составьте на мониторе электрическую схему включения в сеть этих лампочек, которая должна удовлетворять следующему условию: при замкнутом ключе горит только первая лампочка, при размыкании ключа первая гаснет, а вторая загорается.
  13. Конденсатору ёмкостью С сообщают заряд q, после чего обкладки конденсатора замыкают через сопротивление R. Определите: а) закон изменения силы тока, текущего через сопротивление; б) заряд, прошедший через сопротивление за время t; в) количество тепла, выделившееся в сопротивлении за это время.
  14. Определите количество тепла, выделившегося в цепи (рис. 4-6) при переключении ключа К из положения 1 в положение 2. Параметры цепи обозначены на рисунках.