Сущность метода имитационного моделирования

Определим метод имитационного моделирования в общем виде как экспериментальный метод исследования реальной системы по ее имитационной модели, который сочетает особенности эксперименталь­ного подхода и специфические условия использования вычислительной техники.

В этом определении подчеркивается, что имитационное моделиро­вание является машинным методом моделирования благодаря развитию информационных технологий, что привело к появлению этого вида компьютерного моделирования. В определении также акцентируется внимание на экспериментальной природе имитации, применяется имитационный метод исследования (осуществляется эксперимент с моделью). В имитационном моделировании важную роль играет не только проведение, но и планирование эксперимента на модели. Однако это определение не проясняет, что собой представляет сама имитационная модель. Ответим на вопрос, в чем же состоит сущность имитационного моделирования?

В процессе имитационного моделирования (рис. 2.1) исследователь имеет дело с четырьмя основными элементами: 

  • реальная система;
  • логико-математическая модель моделируемого объекта;
  • имитационная (машинная) модель;
  • ЭВМ, на которой осуществляется имитация – направленный вычислительный эксперимент. 

Исследователь изучает реальную систему, разрабатывает логико-математическую модель реальной системы. Имитационный характер исследования предполагает наличие логико - или логико-математических моделей, описываемых изучаемый процесс.

Выше, реальная система определялась как совокупность взаимодействующих элементов, функционирующих во времени.

Составной характер сложной системы описывает представление ее модели в виде трех множеств:

AST >, где

А – множество элементов (в их число включается и внешняя среда);

S – множество допустимых связей между элементами (структура модели);

Т – множество рассматриваемых моментов времени.

Особенностью имитационного моделирования является то, что имитационная модель позволяет воспроизводить моделируемые объекты:

  • с сохранением их логической структуры;
  • с сохранением поведенческих свойств (последовательности чередования во времени событий, происходящих в системе), т.е. динамики взаимодействий.

При имитационном моделировании структура моделируемой системы адекватно отображается в модели, а процессы ее функционирования проигрываются (имитируются) на построенной модели. Поэтому построение имитационной модели заключается в описании структуры и процессов функционирования моделируемого объекта или системы. В описании имитационной модели выделяют две составляющие

  • статическое описание системы, которое по-существу является описанием ее структуры. При разработке имитационной модели необходимо применять структурный анализ моделируемых процессов.
  • динамическое описание системы, или описание динамики взаимодействий ее элементов. При его составлении фактически требуется построение функциональной модели моделируемых динамических процессов. 

Идея метода, с точки зрения его программной реализации, состоит в следующем. Что, если элементам системы поставить в соответствие некоторые программные компоненты, а состояния этих элементов описывать с помощью переменных состояния. Элементы, по определению, взаимодействуют (или обмениваются информацией), значит, может быть реализован алгоритм функционирования отдельных элементов, т.е., моделирующий алгоритм. Кроме того, элементы существуют во времени, значит надо задать алгоритм изменения переменных состояний. Динамика в имитационных моделях реализуется с помощью механизма продвижения модельного времени.

Отличительной особенностью метода имитационного моделирования является возможность описания и воспроизведения взаимодействия между различными элементами системы. Таким образом, чтобы составить имитационную модель, надо:

  • представить реальную систему (процесс), как совокупность взаимодействующих элементов;
  • алгоритмически описать функционирование отдельных элементов;
  • описать процесс взаимодействия различных элементов между собой и с внешней средой.

Ключевым моментом в имитационном моделировании является выделение и описание состояний системы. Система характеризуется набором переменных состояний, каждая комбинация которых описывает конкретное состояние. Следовательно, путем изменения значений этих переменных можно имитировать переход системы из одного состояния в другое. Таким образом, имитационное моделирование – это представле­ние динамического поведения системы посредством продвижения ее от одного состояния к другому в соответствии с определенными правилами. Эти изменения состояний могут происходить либо непрерывно, либо в дискретные моменты времени. Имитационное моделирование есть динамическое отражение изменений состояния системы с течением времени.

При имитационном моделировании логическая структура реальной системы отображается в модели, а также имитируется динамика взаимодействий подсистем в моделируемой системе.


Для описания динамики моделируемых процессов в имитационном моделировании реализован механизм задания модельного времени. Этот механизм встроен в управляющие программы системы моделирования.

Если бы на ЭВМ имитировалось поведение одной компоненты системы, то выполнение действий в имитационной модели можно было бы осуществить последовательно, по пересчету временной координаты.

Чтобы обеспечить имитацию параллельных событий реальной системы вводят некоторую глобальную переменную (обеспечивающую синхронизацию всех событий в системе) t0 , которую называют модельным (или системным) временем.

Существуют два основных способа изменения t0:

  • пошаговый (применяются фиксированные интервалы изменения модельного времени);
  • по-событийный (применяются переменные интервалы изменения модельного времени, при этом величина шага измеряется интервалом до следующего события).

В случае пошагового метода продвижение времени происходит с минимально возможной постоянной длиной шага (принцип t). Эти алгоритмы не очень эффективны с точки зрения использования машинного времени на их реализацию.

Способ фиксированного шага применяется в случаях:

  • если закон изменения от времени описывается интегро-дифференциальными уравнениями. Характерный пример: решение интегро-дифференциальных уравнений численным методом. В подобных методах шаг моделирования равен шагу интегрирования. Динамика модели является дискретным приближением реальных непрерывных процессов;
  • когда события распределены равномерно и можно подобрать шаг изменения временной координаты;
  • когда сложно предсказать появление определенных событий;
  • когда событий очень много и они появляются группами.

В остальных случаях применяется по-событийный метод, например, когда события распределены неравномерно на временной оси и появляются через значительные временные интервалы.

По-событийный метод (принцип “особых состояний”). В нем координаты времени меняются тогда, когда изменяется состояние системы. В по-событийных методах длина шага временного сдвига максимально возможная. Модельное время с текущего момента изменяется до ближайшего момента наступления следующего события. Применение по-событийного метода предпочтительнее в том случае, если частота наступления событий невелика. Тогда большая длина шага позволит ускорить ход модельного времени. На практике по-событийный метод получил наибольшее распространение.

Таким образом, вследствие последовательного характера обработки информации в ЭВМ, параллельные процессы, происходящие в модели, преобразуются с помощью рассмотренного механизма в последовательные. Такой способ представления носит название квазипараллельного процесса.

Простейшая классификация на основные виды имитационных моделей связана с применением двух этих способов продвижения модельного времени. Различают имитационные модели: 

  • непрерывные;
  • дискретные;
  • непрерывно-дискретные.

 

В непрерывных имитационных моделях переменные изменяются непрерывно, состояние моделируемой системы меняется как непрерывная функция времени, и, как правило, это изменение описывается системами дифференциальных уравнений. Соответственно продвижение модельного времени зависит от численных методов решения дифференциальных уравнений.

В дискретных имитационных моделях переменные изменяются дискретно в определенные моменты имитационного времени (наступления событий). Динамика дискретных моделей представляет собой процесс перехода от момента наступления очередного события к моменту наступления следующего события.

Поскольку в реальных системах непрерывные и дискретные процессы часто невозможно разделить, были разработаны непрерывно-дискретные модели, в которых совмещаются механизмы продвижения времени, характерные для этих двух процессов.


Имитационный характер исследования предполагает наличие логико, или логико-математических моделей, описываемых изучаемый процесс (систему).

Логико-математическая модель сложной системы может быть как алгоритмической, так и неалгоритмической.

Чтобы быть машинно-реализуемой, на основе логико-математической модели сложной системы строится моделирующий алгоритм, который описывает структуру и логику взаимодействия элементов в системе.

Имита­ционная модель – это программная реализация моделирующего алгоритма. Она составляется с применением средств автоматизации моделирования. Подробнее технология имитационного моделирования, инструментальные средства моделирования, языки и системы моделиро­вания, с помощью которых реализуются имитационные модели, будут рассмотрены ниже.


В общем виде технологическая схема имитационного моделирования представлена на рис.2.5.

Рис. 2.5. Технологическая схема имитационного моделирования

  1. реальная система;
  2. построение логико-математической модели;
  3. разработка моделирующего алгоритма;
  4. построение имитационной (машинной) модели;
  5. планирование и проведение имитационных экспериментов;
  6. обработка и анализ результатов;
  7. выводы о поведении реальной системы (принятие решений)

Метод имитационного моделирования позволяет решать задачи высокой сложности, обеспечивает имитацию сложных и многообразных процессов, с большим количеством элементов. Отдельные функциональные зависимости в таких моделях могут описываться громоздкими математическими соотношениями. Поэтому имитационное моделирование эффективно используется в задачах исследования систем со сложной структурой с целью решения конкретных проблем.

Имитационная модель содержит элементы непрерывного и дискрет­ного действия, поэтому применяется для исследования динамических систем, когда требуется анализ узких мест, исследование динамики функционирования, когда желательно наблюдать на имитационной модели ход процесса в течение определенного времени.

Имитационное моделирование – эффективный аппарат исследова­ния стохастических систем, когда исследуемая система может быть подвержена влиянию многочисленных случайных факторов сложной природы. Имеется возможность проводить исследование в условиях неопределенности, при неполных и неточных данных.

Имитационное моделирование является важным фактором в системах поддержки принятия решений, т.к. позволяет исследовать большое число альтернатив (вариантов решений), проигрывать различные сценарии при любых входных данных. Главное преимущество имитационного моделирования состоит в том, что исследователь для проверки новых стратегий и принятия решений, при изучении возможных ситуаций, всегда может получить ответ на вопрос “Что будет, если? ...”. Имитационная модель позволяет прогнозировать, когда речь идет о проектируемой системе или исследуются процессы развития (т.е. в тех случаях, когда реальной системы еще не существует).

В имитационной модели может быть обеспечен различный, в том числе и высокий, уровень детализации моделируемых процессов. При этом модель создается поэтапно, эволюционно.

Определимметод имитационного моделированияв общем виде какэкспериментальный метод исследования реальной системы по ее имитационной модели, который сочетает особенности эксперименталь ного подхода и специфические условия использования вычислительной техники.

В этом определении подчеркивается, что имитационное моделиро вание является машинным методом моделирования благодаря развитию информационных технологий, что привело к появлению этого вида компьютерного моделирования. В определении также акцентируется внимание на экспериментальной природе имитации, применяется имитационный метод исследования (осуществляется эксперимент с моделью). В имитационном моделировании важную роль играет не только проведение, но и планирование эксперимента на модели. Однако это определение не проясняет, что собой представляет сама имитационная модель. Ответим на вопрос, в чем же состоит сущность имитационного моделирования?

В процессе имитационного моделирования (рис. 2.1) исследователь имеет дело с четырьмя основными элементами:

  • реальная система;
  • логико-математическая модель моделируемого объекта;
  • имитационная (машинная) модель;
  • ЭВМ,накоторойосуществляетсяимитация–направленный

вычислительный эксперимент.

Исследователь изучает реальную систему, разрабатывает логико-математическую модель реальной системы.Имитационный характер исследования предполагает наличие логико - или логико-математических моделей, описываемых изучаемый процесс.

Выше,реальнаясистемаопределяласькаксовокупность взаимодействующих элементов, функционирующих во времени.

Составной характер сложной системы описывает представление ее модели в виде трех множеств:

<A,S,T>, где

А– множество элементов (в их число включается и внешняя среда);

S– множество допустимых связей между элементами (структура модели);

Т– множество рассматриваемых моментов времени.

Особенностью имитационного моделированияявляется то, что имитационная модель позволяет воспроизводить моделируемые объекты:

  • с сохранением их логической структуры;
  • с сохранением поведенческих свойств(последовательности чередования во времени событий, происходящих в системе), т.е. динамики взаимодействий.

При имитационном моделировании структура моделируемой системы адекватно отображается в модели, а процессы ее функционирования проигрываются (имитируются) на построенной модели. Поэтому построение имитационной модели заключается в описании структуры и процессов функционирования моделируемого объекта или системы.В описании имитационной модели выделяют две составляющие:

  • статическое описание системы, которое по-существу является описанием ее структуры. При разработке имитационной модели необходимоприменятьструктурныйанализмоделируемых процессов.
  • динамическое описание системы, или описание динамики взаимодействий ее элементов. При его составлении фактически требуется построениефункциональной моделимоделируемых динамических процессов.

Идея метода, с точки зрения его программной реализации, состоит в следующем. Что, если элементам системы поставить в соответствие некоторые программные компоненты, а состояния этих элементов описывать с помощью переменных состояния. Элементы, по определению, взаимодействуют (или обмениваются информацией), значит, может быть реализован алгоритм функционирования отдельных элементов, т.е., моделирующий алгоритм. Кроме того, элементы существуют во времени, значит надо задать алгоритм изменения переменных состояний. Динамика в имитационных моделях реализуется с помощьюмеханизма продвижения модельного времени.

Отличительной особенностью метода имитационного моделирования является возможность описания и воспроизведения взаимодействия между различными элементами системы. Таким образом, чтобы составить имитационную модель, надо:

  • представить реальную систему (процесс), как совокупность взаимодействующих элементов;
  • алгоритмически описать функционирование отдельных элементов;
  • описать процесс взаимодействия различных элементов между собой и с внешней средой.

Ключевым моментом в имитационном моделировании является выделение и описаниесостоянийсистемы. Система характеризуетсянабором переменных состояний, каждая комбинация которых описывает конкретное состояние. Следовательно, путем изменения значений этих переменных можно имитировать переход системы из одного состояния в другое. Таким образом, имитационное моделирование – это представле ниединамического поведениясистемы посредством продвижения ее от одного состояния к другому в соответствии с определенными правилами. Эти изменения состояний могут происходить либо непрерывно, либо в дискретные моменты времени. Имитационное моделированиеесть динамическое отражение изменений состояния системы с течением времени.

При имитационном моделировании логическая структура реальной системы отображается в модели, а такжеимитируетсядинамика взаимодействий подсистем в моделируемой системе.


Для описания динамики моделируемых процессов в имитационном моделировании реализованмеханизм задания модельного времени.Этот механизм встроен в управляющие программы системы моделирования.

Если бы на ЭВМ имитировалось поведение одной компоненты системы, то выполнение действий в имитационной модели можно было бы осуществить последовательно, по пересчету временной координаты.

Чтобы обеспечить имитацию параллельных событий реальной системы вводят некоторую глобальную переменную (обеспечивающую синхронизацию всех событий в системе)t0, которую называютмодельным (или системным) временем.

Существуют два основных способа измененияt0:

  • пошаговый(применяются фиксированные интервалы изменения модельного времени);
  • по-событийный(применяются переменные интервалы изменения модельного времени, при этом величина шага измеряется интервалом до следующего события).

В случаепошагового методапродвижение времени происходит с минимально возможной постоянной длиной шага(принципt).Эти алгоритмы не очень эффективны с точки зрения использования машинного времени на их реализацию.

Способ фиксированного шага применяется в случаях:

  • если закон изменения от времени описывается интегро-дифференциальными уравнениями. Характерный пример: решение интегро-дифференциальных уравнений численным методом. В подобных методах шаг моделирования равен шагу интегрирования. Динамика модели является дискретным приближением реальных непрерывных процессов;
  • когда события распределены равномерно и можно подобрать шаг изменения временной координаты;
  • когда сложно предсказать появление определенных событий;
  • когда событий очень много и они появляются группами.

В остальных случаях применяется по-событийный метод, например, когда события распределены неравномерно на временной оси и появляются через значительные временные интервалы.

По-событийный метод (принцип “особых состояний”).В нем координаты времени меняются тогда, когда изменяется состояние системы. В по-событийных методах длина шага временного сдвига максимально возможная. Модельное время с текущего момента изменяется до ближайшего момента наступления следующего события. Применение по-событийного метода предпочтительнее в том случае, если частота наступления событий невелика. Тогда большая длина шага позволит ускорить ход модельного времени. На практике по-событийный метод получил наибольшее распространение.

Таким образом, вследствие последовательного характера обработки информации в ЭВМ, параллельные процессы, происходящие в модели, преобразуются с помощью рассмотренного механизма в последовательные. Такой способ представления носит название квазипараллельного процесса.

Простейшая классификация на основные виды имитационных моделей связана с применением двух этих способов продвижения модельного времени. Различают имитационные модели:

  • непрерывные;
  • дискретные;
  • непрерывно-дискретные.

Внепрерывных имитационных моделяхпеременные изменяются непрерывно, состояние моделируемой системы меняется как непрерывная функция времени, и, как правило, это изменение описывается системами дифференциальных уравнений. Соответственно продвижение модельного времени зависит от численных методов решения дифференциальных уравнений.

Вдискретных имитационных моделяхпеременные изменяются дискретно в определенные моменты имитационного времени (наступления событий). Динамика дискретных моделей представляет собой процесс перехода от момента наступления очередного события к моменту наступления следующего события.

Поскольку в реальных системах непрерывные и дискретные процессы часто невозможно разделить, были разработанынепрерывно-дискретные модели, в которых совмещаются механизмы продвижения времени, характерные для этих двух процессов.

Моделирующий алгоритм. Имитационная модель

Имитационный характер исследования предполагает наличиелогико, или логико-математических моделей,описываемых изучаемый процесс (систему).

Логико-математическая модель сложной системы может быть какалгоритмической, так инеалгоритмической.

Чтобы быть машинно-реализуемой, на основе логико-математической модели сложной системы строитсямоделирующий алгоритм, который описывает структуру и логику взаимодействия элементов в системе.

Имита ционная модель– это программная реализация моделирующего алгоритма. Она составляется с применением средств автоматизации моделирования. Подробнее технология имитационного моделирования, инструментальные средства моделирования, языки и системы моделиро вания, с помощью которых реализуются имитационные модели, будут рассмотрены ниже.

Возможности метода имитационного моделирования

Метод имитационного моделирования позволяет решать задачи высокой сложности, обеспечивает имитацию сложных и многообразных процессов, с большим количеством элементов. Отдельные функциональные зависимости в таких моделях могут описываться громоздкими математическими соотношениями. Поэтому имитационное моделирование эффективно используется в задачах исследования систем со сложной структурой с целью решения конкретных проблем.

Имитационная модель содержит элементы непрерывного и дискрет ного действия, поэтому применяется для исследования динамических систем, когда требуетсяанализ узких мест, исследованиединамики функционирования,когда желательно наблюдать на имитационной модели ход процесса в течение определенного времени.

Имитационное моделирование – эффективный аппарат исследова ниястохастических систем,когда исследуемая система может быть подвержена влиянию многочисленных случайных факторов сложной природы. Имеется возможность проводить исследованиев условиях неопределенности,при неполных и неточных данных.

Имитационное моделирование является важным фактором всистемах поддержки принятия решений, т.к. позволяет исследовать большое число альтернатив (вариантов решений), проигрывать различные сценарии при любых входных данных. Главное преимущество имитационного моделирования состоит в том, что исследователь для проверки новых стратегий и принятия решений, при изучении возможных ситуаций, всегда может получить ответ на вопрос “Что будет, если?...”. Имитационная модель позволяет прогнозировать, когда речь идет о проектируемой системе или исследуются процессы развития (т.е. в тех случаях, когда реальной системы еще не существует).

В имитационной модели может быть обеспечен различный, в том числе и высокий,уровень детализациимоделируемых процессов. При этом модель создается поэтапно, эволюционно.