Рассеяние света

Объясняя распространение света в прозрачных средах с волновой точки зрения, мы предполагали, что вторичное излучение электронов, возбужденных световой волной, когерентно с падающим. Действительно, классическая теория дисперсии основана на теории вынужденных колебаний электронов. А вынужденные колебания когерентны с вынуждающими, т. е. с возбуждающей электромагнитной волной. Учет интерференции этого излучения с первичным и приводит к известным законам отражения и преломления. При этом преломленная волна движется только вперед.

Иногда в реальных условиях возникает заметное рассеяние света, т. е. распространение вторичных волн в различных направлениях, не совпадающих с направлением первичной волны.

Существенно здесь следующее: проходящая волна приводит атомы в «возбужденное состояние», т. е. их энергия растет. Через малые (порядка 10-9 с) промежутки времени атомы возвращаются в нормальное состояние, давая вторичное излучение, причем оно уженекогерентно с падающим, так как акты вторичного излучения распределены во времени по случайному закону. В результате вторичное излучение распространяется во все стороны — возникает рассеяние. Такое рассеяние называется резонансным — оно происходит на частотах, лежащих в полосе поглощения, и наблюдать его нелегко.

Статья 480 - Картинка 1

Рис 8.7

Более распространенный тип рассеяния — рассеяние на неоднородностях, позволяющее, например, следить за распространением светового луча в сосуде с водой при рассматривании его сбоку. В чистой воде рассеяние незначительно. Если же капнуть в воду одеколона (или взять раствор канифоли в спирту), то вода мутнеет и рассеяние сильно возрастает. Пока рассеяние невелико, рассеянный свет имеет голубоватый оттенок (при распространении белого света), а проходящий чуть-чуть желтеет. При увеличении мутности рассеяние усиливается, а в проходящем свете остаются только лучи длинноволновой части видимого спектра.

Так как при восходе и заходе Солнца его лучи проходят значительный путь в нижних слоях атмосферы, содержащих различные загрязнения, то возникает заметное рассеяние и Солнце кажется красноватым.

Теория рассеяния на неоднородностях была дана Рэлеем. Он показал, что частицы, размеры которых малы по сравнению с длиной волны, рассеивают свет более или менее равномерно (рис. 8.7, а), причем интенсивность рассеянного света пропорциональна четвертой степени частоты. Если же размеры рассеивающих частиц сравнимы с длиной волны, то рассеяние происходит в основном в направлении падающей волны (рис. 8.7, б), а интенсивность его мало зависит от длины волны. Для еще больших частиц длина волны почти совсем перестает влиять на интенсивность рассеянного света (поэтому облака кажутся белыми).

Статья 480 - Картинка 2

Рис 8.8

Мандельштам показал, что флуктуации плотности атмосферы на больших высотах, где она практически не содержит загрязнений, происходящие в малых объемах (линейные размеры их меньше длины волны), влекут за собой изменения показателя преломления, т. е. создают микронеоднородности, вызывающие сильное рассеяние синей часта спектра солнечного света; поэтому чистое небо кажется синим.

При рассеянии линейно-поляризованного света легко обнаружить существование поляризации. Так, если вдоль оси х распространяется волна с электрическим вектором Статья 480 - Картинка 3z, ТО при наблюдении рассеяния вдоль оси у свет виден хорошо (молекулярные диполи излучают в этом направлении). Но при наблюдении вдоль оси z интенсивность рассеянного света очень мала.

Эффект рассеяния поляризованного света использован Умовым в превосходной демонстрации вращения плоскости колебаний в водном растворе сахара (рис. 8.8). Узкий пучок белого света падает на зеркало 3 и идет затем вдоль оси высокого (50 — 70 см) цилиндра М,наполненного водным раствором сахара. Между зеркалом и цилиндром находится поляризатор П. Плоскость колебаний в растворе постепенно поворачивается, причем угол поворота на единицу длины пути зависит от длины волны света. Наблюдатели А и Б, смотрящие на цилиндр в направлениях, образующих прямой угол, воспринимают разную окраску некоторого сечения, а весь цилиндр кажется им пронизанным цветным винтом. Если поворачивать поляризатор, то этот винт также поворачивается. При повороте поляризатора на 90° максимум интенсивности некоторого цвета сменяется минимумом, и наоборот. Во всех рассмотренных случаях частота света при рассеянии сохраняется. Явления рассеяния с изменением частоты света не могут быть объяснены с волновой точки зрения; они описаны в главе 10.